|
! 3D曲線 を、マウスで、ひっくり返す。
! サンプルに、見づらい Hodgkin-Huxley 方程式 のグラフを、使用。
!-------------------------------
OPTION ARITHMETIC NATIVE
OPTION ANGLE DEGREES
DIM pV(4), P3D(4,4), LH(6), copy(0 TO 100000, 3)
DIM rotx(4,4), shxyzM(4,4), shxyzP(4,4)
MAT rotx=IDN
MAT shxyzM=IDN
MAT shxyzP=IDN
!
!-----
LET t$="ヤリイカの巨大神経(カオス)"
LET t2$="Hodgkin-Huxley ホジキン-ハクスレイ方程式 のストレンジ アトラクタ"
DEF I(t)= I0+A*SIN( 360*f*t ) ! 膜電流 +外部入力
LET t3$="膜電位 V →( X)"
! (d V/dt)= I(t)-120*m^3*h*(V-115) -40*n^4*(V+12) -.24*(V-10.613)
LET t4$="ナトリウム 活性化変数( 0< m< 1) →( Y)"
! (d m/dt)= .1*(25-V)/(EXP((25-V)/10)-1)*(1-m) -4*EXP(-V/18)*m
LET t5$="ナトリウム不活性化変数( 0< h< 1) →( Z)"
! (d h/dt)= .07*EXP(-V/20)*(1-h) -1/(EXP((30-V)/10)+1)*h
! カリウム活性化変数( 0< n< 1) →描画しない。
! (d n/dt)= .01*(10-V)/(EXP((10-V)/10)-1)*(1-n) -.125*EXP(-V/80)*n
SUB Dxyzn( kx,ky,kz,kn, x,y,z,n)
LET kx= I(t)-120*y^3*z*(x-115) -40*n^4*(x+12) -.24*(x-10.613) ! (d V/dt)
LET ky= .1*(25-x)/(EXP((25-x)/10)-1)*(1-y) -4*EXP(-x/18)*y ! (d m/dt)
LET kz= .07*EXP(-x/20)*(1-z) -1/(EXP((30-x)/10)+1)*z ! (d h/dt)
LET kn= .01*(10-x)/(EXP((10-x)/10)-1)*(1-n) -.125*EXP(-x/80)*n! (d n/dt)
END SUB
LET I0=20 !膜電流 パラメーター
LET A=40
LET f=.3000001
!
LET x=6.24 !初期値 x,y,z,n
LET y=.0761
LET z=.301
LET n=.519
LET dt=.05 !RungeKutta pitch time
LET t99=500 !RungeKutta close time
DATA -15,100, -.3,1, -.04,.45 !座標軸の両端座標 xL,xH, yL,yH, zL,zH
MAT READ LH
LET zox=35 !回転 旋回中心点 center へのオフセットxyz
LET zoy=.6
LET zoz=.2
!
LET Sx=1 !スケール倍率 Sx,Sy,Sz
LET Sy=50
LET Sz=200
LET xm=35 !画面中心 xm,ym
LET ym=35
LET hw=80 !画面幅/2 ±hw
!
LET ax=-75 !z軸をx軸で倒す開始角度
LET ay=0 !z軸をy軸で倒す開始角度
LET SS=0 !z軸 回転開始角度
LET ST= +5 !z軸 回転ステップ +:左回転 -:右回転
!
SET WINDOW xm-hw,xm+hw,ym-hw,ym+hw
CALL graph3D
!-----
SUB RungeKutta
CALL Dxyzn( kx1,ky1,kz1,kn1, x,y,z,n)
CALL Dxyzn( kx2,ky2,kz2,kn2, x+kx1*dt/2,y+ky1*dt/2,z+kz1*dt/2,n+kn1*dt/2)
CALL Dxyzn( kx3,ky3,kz3,kn3, x+kx2*dt/2,y+ky2*dt/2,z+kz2*dt/2,n+kn2*dt/2)
CALL Dxyzn( kx4,ky4,kz4,kn4, x+kx3*dt ,y+ky3*dt ,z+kz3*dt ,n+kn3*dt )
LET x=x+(kx1+2*kx2+2*kx3+kx4)*dt/6
LET y=y+(ky1+2*ky2+2*ky3+ky4)*dt/6
LET z=z+(kz1+2*kz2+2*kz3+kz4)*dt/6
LET n=n+(kn1+2*kn2+2*kn3+kn4)*dt/6
END SUB
SUB graph3D
! 回転 旋回中心点 center を 原点へ移動し、又、元へ戻す行列。
!(x,y,z,1)| 1, 0, 0, 0 |
! | 0, 1, 0, 0 |
! | 0, 0, 1, 0 |
! |-zox*Sx,-zoy*Sy,-zoz*Sz, 1 |
LET shxyzM(4,1)=-zox*Sx
LET shxyzM(4,2)=-zoy*Sy
LET shxyzM(4,3)=-zoz*Sz
!
!(x,y,z,1)| 1, 0, 0, 0 |
! | 0, 1, 0, 0 |
! | 0, 0, 1, 0 |
! | zox*Sx, zoy*Sy, zoz*Sz, 1 |
LET shxyzP(4,1)=zox*Sx
LET shxyzP(4,2)=zoy*Sy
LET shxyzP(4,3)=zoz*Sz
!
LET az=SS
CALL rot_panel
!---3D 曲線、1回目で、3D原画 記録を撮る。
LET ci=0
FOR t=0 TO t99 STEP dt
LET copy(ci,1)=x
LET copy(ci,2)=y
LET copy(ci,3)=z
! PRINT x;y;z;n ! データーを保存したい時。
CALL line3D(x,y,z)
CALL RungeKutta
LET ci=ci+1
NEXT t
!----
MOUSE POLL m_x,m_y,mlb,mrb
LET mxbak=m_x
LET mybak=m_y
DO
IF mlb=0 THEN LET az=MOD(az+ST,360) ! z軸で、1ステップ回す。
SET DRAW mode hidden
CALL rot_panel
!---3D 曲線、2回目以降は、記録の再生で、高速描画。
FOR ci=0 TO ci-1
CALL line3D( copy(ci,1),copy(ci,2),copy(ci,3) )
NEXT ci
SET DRAW mode explicit
!----
MOUSE POLL m_x,m_y,mlb,mrb
IF mlb=1 THEN
LET ax=ax -(m_y-mybak)!/2 ! 変移方向は、+90度 回す。
LET ay=ay +(m_x-mxbak)!/2
END IF
LET mxbak=m_x
LET mybak=m_y
! WAIT DELAY 0.05
LOOP UNTIL mrb=1
END SUB
SUB rot_panel
LET ar0=SQR(ax^2+ay^2) ! 旋回角度
IF ar0<>0 THEN LET DIRar0=ANGLE(ax,ay) ! 旋回軸の方向
IF 180< ar0 THEN
LET ax=(ar0-360)*COS(DIRar0)
LET ay=(ar0-360)*SIN(DIRar0)
END IF
! xy平面上、0度方向(x軸)を、軸として旋回する行列 rotx
!(x,y,z,1)| 1, 0, 0, 0 |
! | 0, cos(ar0), sin(ar0), 0 |
! | 0,-sin(ar0), cos(ar0), 0 |
! | 0, 0, 0, 1 |
LET rotx(2,2)=COS(ar0)
LET rotx(3,2)=-SIN(ar0)
LET rotx(2,3)=SIN(ar0)
LET rotx(3,3)=COS(ar0)
!
MAT P3D= shxyzM*ROTATE(az-DIRar0)*rotx*ROTATE(DIRar0)*shxyzP !変形指示MAT
!----
CLEAR
PLOT TEXT,AT xm-hw*.9,ym+hw*.90 :t2$
PLOT TEXT,AT xm-hw*.9,ym+hw*.83 :t$
PLOT TEXT,AT xm+hw*.1,ym+hw*.83,USING"Ax=#### Ay=#### Az=####":ax,ay,az
PLOT TEXT,AT xm-hw*.9,ym-hw*.92 :t5$
PLOT TEXT,AT xm-hw*.9,ym-hw*.99 :t4$& " "& t3$ ! PEN-off
!---
IF ar0< 90 THEN SET AREA COLOR "cyan" ELSE SET AREA COLOR "black"
DRAW disk WITH SCALE(15)*P3D ! 原点近傍、裏表 のマーカー1
DRAW disk WITH SCALE(5)*SHIFT(zox*Sx,zoy*Sy)*P3D ! マーカー2
CALL axes3D( zox,zoy,0, zox,zoy,zoz, "center" ) ! マーカー3
!---座標軸
CALL axes3D( LH(1),0,0, LH(2),0,0, STR$(LH(2))& "( X)" )
CALL axes3D( 0,LH(3),0, 0,LH(4),0, STR$(LH(4))& "( Y)" )
CALL axes3D( 0,0,LH(5), 0,0,LH(6), STR$(LH(6))& "( Z)" )
END SUB
SUB axes3D(x1,y1,z1, x2,y2,z2, a$ )
CALL line3D(x1,y1,z1)
CALL line3D(x2,y2,z2)
PLOT TEXT,AT pV(1),pV(2) :a$ ! PEN-off
END SUB
SUB line3D(x,y,z)
LET pV(1)=x*Sx !描画目盛は、全方向等しくないと、回転で、形が保てない。
LET pV(2)=y*Sy !スケール Sx,Sy,Sz の違いは、入力の倍率として、行なう。
LET pV(3)=z*Sz !入力 z 座標は 出力 x,y に反映。出力zは 描画不可。
LET pV(4)=1 ! shxyzM …shxyzP で必要。
MAT pV=pV*P3D
PLOT LINES: pV(1),pV(2); ! PEN-on
END SUB
END
!-----
!1)画面に写るxyz軸の、z軸に平行で、
! center を通る軸で、常時回転。
!
!2)マウス 左ボタン押下で 一時停止、離すと再開。
! 右ボタン押下で 終了。
!
!3)左ボタン押下のまま、引きずると、
! xy平面に平行で、center を通る
! 任意な方向の軸で、全体が旋回する。
!
! (z軸 先端を、ドラッグする感じ。)
!
!※ここまで 貼り付けて、実行時のヘルプにする。
|
|