|
混合ガスの分子動力学法(MD2D)のプログラム(010mixLJMD2D.bas)を公開します。
分子動力学法は、それぞれの分子に掛かる力を現在の分子の位置と分子間のポテンシャルから計算し、
現在の分子の位置と速度と力からNewtonの運動方程式を使って短い時間dt後の位置や速度を求め、
これを繰り返すことで運動を追跡する手法です。
異種分子に働く力はLennard-Jonesポテンシャルの場合、epsilon(ポテンシャルの深さ)は
2つのポテンシャルの幾何平均、sigma(分子の大きさ)は代数平均にすると現実に近いことが知られています。
平衡状態にある時、分子の質量が小さい方が平均速度は速くなります。(速度空間を図示すると拡がりが大きくなります)
表示の説明:
初期画面では、青色の円がアルゴン分子、緑色の円がキセノン分子を表します。
キーを押すと反応します。[.]で終了、[0]は温度を変えます。出てきた調節バーで温度を変え、OKをクリックします。
[1]は画面表示を変えます。[9]はいくつかのテーマ(メニューに混合ガスの種類と個数が書かれています)の中から選択します。
試験環境:
本プログラムは十進BASIC 6.6.2 / macOS 10.7.5, 十進BASIC Ver 7.8.0 / windows 10でテストしました。
-------------------
!
! ========= molecular dynamics 2D ==========
!
! 010mixLJMD2D.bas
! Mitsuru Ikeuchi (C) Copyleft
!
! ver 0.0.1 2017.03.18 created
!
OPTION ARITHMETIC NATIVE
DECLARE EXTERNAL SUB md2d.setInitialCondition, md2d.moveParticles, md2d.drawParticles
DECLARE EXTERNAL FUNCTION INKEY$
LET tempMode = 0 !tempMode: 0:adiabatic 1:constant temperature
LET contTemp = 150 !contTemp: controled constant temperature(K)
LET drawMode = 0 !drawMode: 0:ball 1:ball+v+f 2:velocitySpace
DIM menu$(8)
LET menu$(1) = "Ar50 Xe50"
LET menu$(2) = "Ar200 Xe100"
LET menu$(3) = "Ar50 Hg50"
LET menu$(4) = "Ar50 Kr50"
LET menu$(5) = "Kr50 Xe50"
LET menu$(6) = "Kr50 Hg50"
let menu$(7) = "Xe50 Hg50"
LET menu$(8) = "continue"
!setInitialCondition(moleculeKind,nMolecule,xMaximum,yMaximum,contTemp)
CALL setInitialCondition(2,50,4,50,8,8,contTemp) !moleculeKind: 2:Ar 3:Kr 4:Xe 5:Hg
DO
CALL moveParticles(tempMode,contTemp)
CALL drawParticles(tempMode,contTemp,drawMode,menu)
LET S$=INKEY$
IF S$="." THEN
EXIT DO
ELSEIF S$="0" THEN
LOCATE VALUE (1),RANGE 0 TO 400 : temp
IF temp>1 THEN
LET tempMode = 1
LET contTemp = temp
ELSE
LET tempMode = 0
END IF
ELSEIF S$="1" THEN
LET drawMode = MOD(drawMode+1,3)
ELSEIF S$="9" THEN
LOCATE CHOICE (menu$) :nmenu
IF nmenu=1 THEN
CALL setInitialCondition(2,50,4,50,8,8,contTemp)
ELSEIF nmenu=2 THEN
CALL setInitialCondition(2,200,4,100,12,12,contTemp)
ELSEIF nmenu=3 THEN
LET tempMode = 1
LET contTemp = 300
CALL setInitialCondition(2,50,5,50,8,8,contTemp)
ELSEIF nmenu=4 THEN
CALL setInitialCondition(2,50,3,50,8,8,contTemp)
ELSEIF nmenu=5 THEN
CALL setInitialCondition(3,50,4,50,8,8,contTemp)
ELSEIF nmenu=6 THEN
CALL setInitialCondition(3,50,5,50,8,8,contTemp)
ELSEIF nmenu=7 THEN
CALL setInitialCondition(4,50,5,50,8,8,contTemp)
ELSEIF nmenu=8 THEN !contine
!
END IF
END IF
LOOP
END
EXTERNAL FUNCTION INKEY$
OPTION ARITHMETIC NATIVE
SET ECHO "OFF"
LET S$=""
CHARACTER INPUT NOWAIT: S$
LET INKEY$=S$
END FUNCTION
! ---------- Lennard-Jones md2d module ----------
!
! method: velocity Verlet ( F=m*d^2r/dt^2 -> r(t+dt)=r(t)+v*dt,v=v+(F/m)*dt )
! (1) vi = vi + (Fi/mi)*(0.5dt)
! (2) ri = ri + vi*dt
! (3) calculation Fi <- {r1,r2,...,rn} Fi=sum(Fij,j=1 to n),Fij=F(ri-rj)
! (4) vi = vi + (Fi/mi)*(0.5dt)
! (6) goto (1)
! potential: Lennard-Jones V(r) = 4*epsilon*((sigma/r)^12-(sigma/r)^6)
! force F(r) = -dV(r)/dr
! = 24*epsilon*r6*(2*r6-1)/r, r6 = (sigma/r)^6
MODULE md2d
MODULE OPTION ARITHMETIC NATIVE
PUBLIC SUB setInitialCondition !(moleculeKind,nMolecule,xMaximum,yMaximum,contTemp)
PUBLIC SUB moveParticles !(tempMode,contTemp)
PUBLIC SUB drawParticles !(tempMode,contTemp,drawMode,menu)
SHARE NUMERIC sysTime,dt,nMolec,xMax,yMax, molecKind1,molecKind2, rCutoff,hh
SHARE NUMERIC xx(500),yy(500) ! (xx(i),yy(i)) : position of i-th particle
SHARE NUMERIC vx(500),vy(500) ! (vx(i),vy(i)) : velocity of i-th particle
SHARE NUMERIC ffx(500),ffy(500) ! (ffx(i),ffy(i)): total force of i-th particle
SHARE NUMERIC kind(500),mas(500)! kind(i),mas(i) : molec kind, mass of i-th particle
SHARE NUMERIC reg(500,0 TO 100) ! register near molec reg(i,0):number of near i-th molec
SHARE NUMERIC molecData(0 TO 5,0 TO 4) ! molecule 0:mass, 1:epsilon, 2:sigma, 3:dt 4:color
SHARE NUMERIC forceTable(0 TO 5, 0 TO 5,0 TO 1001) ! force table
SHARE STRING molecStr$(0 TO 5)
LET sysTime = 0.0 ! system time (s) in the module
LET dt = 20.0*1.0e-15 ! time step (s)
LET nMolec = 36 ! total number of particles
LET xMax = 6.0E-9 ! x-Box size (m)
LET yMax = 6.0E-9 ! y-Box size (m)
LET molecKind1 = 2 ! molecule kind1 ( 2:Ar )
LET molecKind2 = 4 ! molecule kind2 ( 4:Xe )
LET rCutoff = 1e-9 ! force cutoff radius (m)
LET hh = 1e-12 ! force table step (m)
LET molecData(0,0)=0 ! if molecData(0,0)=0 then set molecData(,)
! ---------- set initial condition
EXTERNAL SUB setInitialCondition(kind1,nMol1,kind2,nMol2,xMaximum,yMaximum,contTemp)
DECLARE EXTERNAL SUB setMoleculesData,setForceTable,setMolecules
RANDOMIZE
! set particles
CALL setMoleculesData
LET sysTime = 0.0
LET nMolec = nMol1+nMol2
LET molecKind1 = kind1
LET molecKind2 = kind2
LET xMax = xMaximum*1e-9
LET yMax = yMaximum*1e-9
LET rCutoff = 1e-9
CALL setForceTable
CALL setMolecules(kind1,nMol1,kind2,nMol2,contTemp)
! set window
SET WINDOW 0,500, 0,500
END SUB
EXTERNAL SUB setMoleculesData
! 0:mass(in AU) 1:eps(in kB) 2:sigma(m) 3:dt(s) 4:color
DATA 4.003 , 10.2 , 2.576e-10 , 5.0e-15, 1 ! 0 He black
DATA 20.183 , 36.2 , 2.976e-10 , 10.0e-15, 13 ! 1 Ne olieve
DATA 39.948 , 124.0 , 3.418e-10 , 20.0e-15, 2 ! 2 Ar blue
DATA 83.50 , 190.0 , 3.610e-10 , 20.0e-15, 3 ! 3 Kr green
DATA 131.30 , 229.0 , 4.055e-10 , 20.0e-15, 10 ! 4 Xe dark green
DATA 200.59 , 851.0 , 2.898e-10 , 20.0e-15, 12 ! 5 Hg brown
! 0 1 2 3 4 5
DATA "He", "Ne", "Ar", "Kr", "Xe", "Hg"
IF molecData(0,0)=0 THEN
MAT READ molecData
FOR i=0 TO 5
LET molecData(i,0) = molecData(i,0)*1.661e-27 !mass(AU)--> (kg)
LET molecData(i,1) = molecData(i,1)*1.38e-23 !eps(kB) --> (J)
NEXT i
MAT READ molecStr$
END IF
END SUB
EXTERNAL SUB setMolecules(kind1,nMol1,kind2,nMol2,contTemp)
DECLARE EXTERNAL SUB ajustVelocity
LET sigmax = MAX(molecData(kind1,2),molecData(kind2,2))
FOR j=1 TO nMol1+nMol2
LET loopCount = 0
DO
LET xx(j) = (xMax-2*sigmax)*RND + sigmax
LET yy(j) = (yMax-2*sigmax)*RND + sigmax
FOR i=1 TO j-1
IF (xx(i)-xx(j))^2+(yy(i)-yy(j))^2 < 2*sigmax^2 THEN EXIT FOR
NEXT i
LET loopCount = loopCount + 1
IF loopCount>1000 THEN EXIT DO
LOOP UNTIL i>=j
IF loopCount>1000 THEN
LET nMolec = j - 1
EXIT FOR
END IF
IF j<=nMol1 THEN LET kind(j) = kind1 ELSE LET kind(j) = kind2
NEXT j
FOR i=1 TO nMolec
LET vx(i) = 200.0*(RND+RND+RND+RND+RND+RND-3)
LET vy(i) = 200.0*(RND+RND+RND+RND+RND+RND-3)
LET ffx(i) = 0.0
LET ffy(i) = 0.0
LET mas(i) = molecData(kind(i),0)
NEXT i
CALL ajustVelocity(contTemp)
END SUB
! ---------- set force table
EXTERNAL SUB setForceTable
DECLARE EXTERNAL FUNCTION cutoff
FOR ki=0 TO 5
FOR kj=0 TO 5
LET epsi = SQR(molecData(ki,1)*molecData(kj,1))
LET sigm = 0.5*(molecData(ki,2)+molecData(kj,2))
FOR ir=10 TO 1001
LET r = ir*hh
LET r6 = (sigm/r)^6
LET forceTable(ki,kj,ir) = cutoff(r,rCutoff)*(24*epsi*r6*(2*r6-1)/r)
NEXT ir
FOR ir=0 TO 9
LET forceTable(ki,kj,ir) = forceTable(ki,kj,10)
NEXT ir
NEXT kj
NEXT ki
END SUB
EXTERNAL FUNCTION cutoff(r,rCutoff)
IF r>0 AND r<0.8*rCutoff THEN
LET ret = 1
ELSEIF r>=0.8*rCutoff AND r<rCutoff THEN
LET ret = 0.5+0.5*COS(PI*(r-0.8*rCutoff)/(0.2*rCutoff))
else
LET ret = 0
END IF
LET cutoff = ret
END FUNCTION
EXTERNAL FUNCTION force(r,ki,kj) !force(r) <-- forceTable - linear interporation
LET ir = INT(r/hh)
LET a = r - ir*hh
LET force = ((hh-a)*forceTable(ki,kj,ir) + a*forceTable(ki,kj,ir+1))/hh
END FUNCTION
! ---------- move particles
EXTERNAL SUB moveParticles(tempMode,contTemp) !tempMode 0:adiabatic 1:constant-temp
DECLARE EXTERNAL SUB registerNearMolec,moveParticlesDT,ajustVelocity
IF (tempMode=1) THEN CALL ajustVelocity(contTemp)
CALL registerNearMolec
FOR i=1 TO 20
CALL moveParticlesDT
NEXT i
END SUB
EXTERNAL SUB moveParticlesDT ! velocity Verlet method
DECLARE EXTERNAL SUB calcForce
FOR i=1 TO nMolec
LET a = 0.5*dt/mas(i)
LET vx(i) = vx(i)+a*ffx(i)
LET vy(i) = vy(i)+a*ffy(i)
LET xx(i) = xx(i)+vx(i)*dt
LET yy(i) = yy(i)+vy(i)*dt
NEXT i
CALL calcForce
FOR i=1 TO nMolec
LET a = 0.5*dt/mas(i)
LET vx(i) = vx(i)+a*ffx(i)
LET vy(i) = vy(i)+a*ffy(i)
NEXT i
LET sysTime=sysTime+dt
END SUB
EXTERNAL SUB calcForce
DECLARE EXTERNAL FUNCTION force,boundaryForce
LET s = 0.5*molecData(2,2) !molecData(2,2)=sigma for Ar
LET rCut2 = rCutoff^2 ! force cutoff radius^2
FOR i=1 TO nMolec
LET ffx(i) = 0.0
LET ffy(i) = 0.0
NEXT i
FOR i=1 TO nMolec-1
FOR k=1 TO reg(i,0)-1
LET j = reg(i,k)
LET xij = xx(i)-xx(j)
LET yij = yy(i)-yy(j)
LET r2ij = xij*xij+yij*yij
IF (r2ij<rCut2) THEN
LET rij = SQR(r2ij)
LET f = force(rij,kind(i),kind(j))
LET fxij = f*xij/rij
LET fyij = f*yij/rij
LET ffx(i) = ffx(i)+fxij
LET ffy(i) = ffy(i)+fyij
LET ffx(j) = ffx(j)-fxij
LET ffy(j) = ffy(j)-fyij
END IF
NEXT k
NEXT i
FOR i=1 TO nMolec ! boundary force
LET ffx(i) = ffx(i)+boundaryForce(xx(i)+s)+boundaryForce(xx(i)-xMax-s)
LET ffy(i) = ffy(i)+boundaryForce(yy(i)+s)+boundaryForce(yy(i)-yMax-s)
NEXT i
END SUB
!EXTERNAL FUNCTION force(r) ! force(r) = -dV(r)/dr
! LET ri = sigma/r
! LET r6 = ri^6
! LET force = (24*epsilon*r6*(2*r6-1)/r)
!END FUNCTION
EXTERNAL FUNCTION boundaryForce(r)
LET adsorp = 0.5*molecData(2,1) !molecData(2,1)=epsilon for Ar
LET ri = molecData(2,2)/r !molecData(2,2)=sigma for Ar
LET r6 = ri^6
LET boundaryForce = (24.0*adsorp*r6*(2.0*r6-1.0)/r)
END FUNCTION
EXTERNAL SUB registerNearMolec
LET rCut = rCutoff+20*2000*dt
LET rcut2 = rCut*rCut
FOR i=1 TO nMolec-1
LET k = 1
FOR j=i+1 TO nMolec
LET r2 = (xx(i)-xx(j))*(xx(i)-xx(j))+(yy(i)-yy(j))*(yy(i)-yy(j))
IF (r2<rcut2) THEN
LET reg(i,k) = j
LET k = k + 1
END IF
NEXT j
LET reg(i,0) = k
NEXT i
END SUB
EXTERNAL FUNCTION maxNearMolec
LET mx = 0
FOR i=1 TO nMolec-1
IF mx<reg(i,0) THEN LET mx = reg(i,0)
NEXT i
LET maxNearMolec = mx-1
END FUNCTION
! ---------- utility
EXTERNAL FUNCTION systemTemprature
LET kB = 1.38e-23 ! Boltzman's constant (J/K)
LET ek= 0.0 !kinetic energy (J)
FOR i=1 TO nMolec
LET ek = ek + 0.5*mas(i)*(vx(i)*vx(i)+vy(i)*vy(i))
NEXT i
LET systemTemprature = ek/(nMolec*kB) !2D: E/N=kT, 3D: E/N=(3/2)kT
END FUNCTION
EXTERNAL SUB ajustVelocity(temp)
DECLARE EXTERNAL FUNCTION systemTemprature
LET r = sqr(temp/systemTemprature)
FOR i=1 TO nMolec
LET vx(i) = r*vx(i)
LET vy(i) = r*vy(i)
NEXT i
END SUB
! ---------- draw particles
EXTERNAL SUB drawParticles(tempMode,contTemp,drawMode,menu)
DECLARE EXTERNAL FUNCTION systemTemprature,maxNearMolec
DECLARE EXTERNAL PICTURE realSpace,velocitySpace
SET DRAW MODE HIDDEN
CLEAR
IF drawMode=0 OR drawMode=1 THEN !--- 0:disk 1:circle+V+F
DRAW realSpace(drawMode)
ELSEIF drawMode=2 THEN
DRAW velocitySpace
END IF
!--- control key guide
SET TEXT HEIGHT 10
SET TEXT COLOR 1 ! black
PLOT TEXT, AT 10,480 :"'.':exit '0':Temp control (Temp<1 adiabatic mode)"
PLOT TEXT, AT 10,460 :"'1':changeGraph '9':select theme "
!--- draw caption
SET TEXT HEIGHT 10
SET TEXT COLOR 1 ! black
LET tmp$ = "adiabatic constantTemp "
PLOT TEXT, AT 50, 70 ,USING "time =#####.## (ps) temp =####.## (K)":sysTime*1E12,systemTemprature
PLOT TEXT, AT 50, 55 ,USING "N =#### max number of near molec =###":nMolec,maxNearMolec
PLOT TEXT, AT 50, 40 ,USING "tempMode = ## ":tempMode
PLOT TEXT, AT 200, 40 :tmp$(tempMode*12+1:tempMode*12+12)
PLOT TEXT, AT 50, 25 ,USING "controled Temperature =####.# (K)":contTemp
PLOT TEXT, AT 90, 10 :" in the box(2D molecular dynamics)"
SET TEXT COLOR molecData(molecKind1,4) ! color of molec kind1
PLOT TEXT, AT 50, 10 :molecStr$(molecKind1)
SET TEXT COLOR molecData(molecKind2,4) ! color of molec kind2
PLOT TEXT, AT 70, 10 :molecStr$(molecKind2)
SET DRAW MODE EXPLICIT
END SUB
EXTERNAL PICTURE realSpace(drawMode)
LET boxSize = 300
LET deltat = 2e-14 !(s)
LET sc = boxSize/xMax
LET xp = 100
LET yp = 100
LET vScate = 100*deltat !velocity line length = v*100*deltat
LET fScale = 1000*deltat*deltat/molecData(2,0) !mass of Ar
SET LINE COLOR 1 ! black : !--- box
PLOT LINES: xp,yp; xp+boxSize,yp; xp+boxSize,yp+boxSize; xp,yp+boxSize; xp,yp
SET TEXT HEIGHT 6
SET TEXT COLOR 1 ! black
PLOT TEXT, AT xp,yp+boxSize+2 ,USING "box size =##.# x ##.# (nm)":xMax*1e9,yMax*1e9
FOR i=1 TO nMolec
IF drawMode=1 THEN !--- draw circle, velocity and force
SET LINE COLOR molecData(kind(i),4) ! molec color
DRAW circle WITH SCALE(molecData(kind(i),2)/2*sc)*SHIFT(xp+xx(i)*sc,yp+yy(i)*sc)
SET LINE COLOR 4 ! red : velocity
PLOT LINES: xp+xx(i)*sc,yp+yy(i)*sc;
PLOT LINES: xp+(xx(i)+vx(i)*vScate)*sc,yp+(yy(i)+vy(i)*vScate)*sc
SET LINE COLOR 1 ! black : force
PLOT LINES: xp+xx(i)*sc,yp+yy(i)*sc;
PLOT LINES: xp+(xx(i)+ffx(i)*fScale)*sc,yp+(yy(i)+ffy(i)*fScale)*sc
ELSE !--- draw disk
SET AREA COLOR molecData(kind(i),4) ! molec color
DRAW disk WITH SCALE(molecData(kind(i),2)/2*sc)*SHIFT(xp+xx(i)*sc,yp+yy(i)*sc)
END IF
NEXT i
IF drawMode=1 THEN
LET xp = 100+boxSize*0.6
LET yp = 100+boxSize+25
SET LINE COLOR 4 ! red : velocity
PLOT LINES: xp,yp;xp+23,yp
SET TEXT COLOR 4 ! red
PLOT TEXT, AT xp+30,yp-4: "velosity"
SET LINE COLOR 1 ! black : force
PLOT LINES: xp,yp-15;xp+23,yp-15
SET TEXT COLOR 1 ! black
PLOT TEXT, AT xp+30,yp-19: "force"
END IF
END PICTURE
EXTERNAL PICTURE velocitySpace
LET boxSize = 300
LET xp = 100+boxSize/2
LET yp = 100+boxSize/2
SET LINE COLOR 1 !black : axis
PLOT LINES: 100,yp; 100+boxSize,yp !vx-axis
PLOT LINES: xp,100; xp,100+boxSize !vy-axis
SET TEXT HEIGHT 6
SET TEXT COLOR 1 ! black
PLOT TEXT, AT 100+boxSize,yp: "vx"
PLOT TEXT, AT 100+boxSize,yp-12: "1000m/s"
PLOT TEXT, AT xp-12,100+boxSize: "vy 1000m/s"
PLOT TEXT, AT xp-8,yp-10: "0"
PLOT TEXT, AT 100,100+boxSize+8: "velocity space (vx,vy)"
LET sc = boxSize/2000
FOR i=1 TO nMolec
SET LINE COLOR molecData(kind(i),4) ! molec color
DRAW circle WITH SCALE(5)*SHIFT(vx(i)*sc+xp,vy(i)*sc+yp)
NEXT i
END PICTURE
END MODULE
|
|