|
定常状態の多電子系の電子密度とエネルギーを求めるプログラム(022sampleLDA1D.bas)を公開します。
1電子の定常状態の電子のエネルギーと電子状態を求める問題は、[008]最急降下法で解くことができました。
多電子系の場合、厳密に電子状態を求めるのは、電子数が多くなるとほとんど不可能になります。
ここでは、1つの電子に注目し他の電子は平均場として扱う近似により多電子系の問題を解く、密度汎関数法により
電子密度とエネルギーを求めます。
密度汎関数法(Density Functional Theory)では、電子密度はそれぞれの電子軌道から決まる電子の存在確率の
総計から求められ、1電子はSchroedingerの方程式に似たKohn-Sham方程式(ポテンシャルの中に多電子の寄与がある)
に従うと仮定します。実効ポテンシャルVeffへの多電子の寄与は電子密度の関数になります。
Veff = Vext + VH + Vx + Vc
Vextは外部ポテンシャル、VHは静電ポテンシャル、Vxは交換ポテンシャル、Vcは相関ポテンシャルです。
本プログラムでは電子密度を仮定し、Kohn-Sham方程式を最急降下法で解き、各電子軌道の総計から電子密度を求め、
これを繰り返すことで電子密度と電子軌道、エネルギーを求めます。
表示の説明:
黒の線は外部ポテンシャル、灰色は電子密度を表します。[D]を押すことで表示を変更できます。
試験環境:
本プログラムは十進BASIC 6.6.3.3 / macOS 10.7.5 でテストしました。
----------------
!
! ========= RSDFT - local density approximation 1D ==========
!
! 022sampleLDA1D.bas
! Copyright(C) 2017 Mitsuru Ikeuchi
!
! ver 0.0.1 2017.07.28 created
!
OPTION ARITHMETIC NATIVE
DECLARE EXTERNAL SUB lda1d.setInitialCondition,lda1d.setNumberOfElectron,lda1d.iterateLDA,lda1d.drawState
DECLARE EXTERNAL FUNCTION INKEY$
LET stateMax = 10 !state 0,1,...,stateMax-1
LET vIndex = 0 !0:harmonic potential, 1:quantum well
LET nElectron = 4
LET iterMax = 10 ! 10 = iteration in iterateLDA
LET dispMode = 1 !0:Vext+rho, 1:Vext+rho+orbit, 2:rho+Vext+Veff+Vh+Vx+Vc
CALL setInitialCondition(stateMax,vIndex,nElectron)
DO
CALL iterateLDA(stateMax, iterMax)
CALL drawState(dispMode)
LET S$=INKEY$
IF S$="D" OR S$="d" THEN
LET dispMode = mod(dispMode+1,3)
ELSEIF S$="1" OR S$="2" OR S$="3" OR S$="4" OR S$="5" OR S$="6" THEN
LET nElectron = VAL(s$)
CALL setNumberOfElectron(nElectron)
ELSEIF S$="7" THEN
LET vIndex = 0
CALL setInitialCondition(stateMax,vIndex,nElectron)
ELSEIF S$="8" THEN
LET vIndex = 1
CALL setInitialCondition(stateMax,vIndex,nElectron)
END IF
LOOP UNTIL S$=chr$(27)
END
EXTERNAL FUNCTION INKEY$ !from decimal BASIC library
OPTION ARITHMETIC NATIVE
SET ECHO "OFF"
LET S$=""
CHARACTER INPUT NOWAIT: S$
LET INKEY$=S$
END FUNCTION
! ---------- RSDFT - local density approximation 1D ----------
!
! - real space density functional theory - local density approximation
! - solve Kohn-Sham equation - successive approximation
! - Vxc : LDA(local density approximation)
! J. P. Perdew and A. Zunger; Phys. Rev., B23, 5048 (1981)
!
! procedure
! (1) given: trial |i>, occupation(i)
!
! (2) set electron density rho
! rho <-- |i>, occupation[(i), mixing rho(iter-1)
!
! (3) set effective potential
! Veff = Vext + Vh + Vx + Vc
! Vh <-- rho (Poisson eq. ,SOR iteration)
! Vx,Vc <-- rho (LDA:Perdew-Zunger)
!
! (4) solve Kohn-Sham equation (successive approximation)
! |i> steepest descent method: |i(next)> = |i> - dump{H-E}|i>
! E(i) <-- <i|H|i>
! {|0>,..,|i>,..,|N>} orthogonallization : Gram-Schmidt
!
! (5) sort state
! sort orbit by E(i)
!
! (6) set occupation
! occupation(i) <-- E(i)
!
! (7) goto (2)
!
MODULE lda1d
MODULE OPTION ARITHMETIC NATIVE
OPTION BASE 0
PUBLIC SUB setInitialCondition, setNumberOfElectron, iterateLDA, drawState
SHARE NUMERIC NNx, dx, lylz, iterCount
SHARE NUMERIC numberOfElectron, numberOfElectronBounds, numberOfOrbit, errorDecisionOrbit
SHARE NUMERIC energyMem, iterationError, convergenceErrorMax, dampingFactor
SHARE NUMERIC mixing,broadening
SHARE NUMERIC sdEnergy(20) ! electron state energy
SHARE NUMERIC sdState(20,400) ! electron states 0...20 0:ground state
SHARE NUMERIC occupation(20) ! occupation of orbit
SHARE NUMERIC wrk(400) ! state work space in steepestDescent
SHARE NUMERIC vv(400) ! effective potential
SHARE NUMERIC vvext(400) ! external potential
SHARE NUMERIC vvh(400) ! Hartree potential
SHARE NUMERIC vvx(400) ! exchange potential
SHARE NUMERIC vvc(400) ! correlation potential
SHARE NUMERIC rho(400) ! charge density
LET NNx = 64 ! max number of sdState(,NNx,NNy)
LET dx = 0.25 ! (au) x-division
LET lylz = 16.0*16.0 ! (au) v=dx*ly*lz
LET iterCount = 0 ! sd iteration count
LET numberOfElectron = 4 !
LET numberOfElectronBounds = 6! selection bounds OF numberOfElectron
LET numberOfOrbit = 10 !
LET energyMem = 0.0
LET iterationError = 1.0
LET convergenceErrorMax = 1.0e-5
LET dampingFactor = 0.03 ! steepest descent method
LET mixing = 0.5 ! charge mixing in setRho()
LET broadening = 0.001 ! (au) level broadening IN setOccupation
! ---------- set initial condition
EXTERNAL SUB setInitialCondition(stateMax,vIndex,nElectron) !public
DECLARE EXTERNAL SUB setInitialState,setExternalPotential
LET iterCount = 0
LET numberOfElectron = nElectron
CALL setInitialState(stateMax)
CALL setExternalPotential(vIndex)
! set window
SET WINDOW 0,500, 0,500
END SUB
EXTERNAL SUB setNumberOfElectron(nElectron) !public
LET iterCount = 0
LET numberOfElectron = nElectron
END SUB
EXTERNAL SUB setInitialState(stateMax)
DECLARE EXTERNAL SUB normalizeState
RANDOMIZE
FOR ist=0 TO stateMax-1
FOR i=1 TO NNx-2
LET sdState(ist,i) = RND-0.5
NEXT i
LET sdState(ist,0) = 0
LET sdState(ist,NNx-1) = 0
CALL normalizeState(ist)
NEXT ist
END SUB
EXTERNAL SUB setExternalPotential(vIndex)
LET x0 = 0.5*NNx*dx
IF vIndex=0 THEN !--- hermonic
FOR i=0 TO NNx-1
LET x = i*dx
LET vvext(i) = MIN(0.5*(x-x0)^2,24.5)
NEXT i
ELSEIF vIndex=1 THEN !--- well
FOR i=0 TO NNx-1
LET x = i*dx
IF ABS(x-x0)<4 THEN LET vvext(i) = 0 ELSE LET vvext(i) = 18
NEXT i
END IF
END SUB
EXTERNAL SUB setInitialOccupation(nOrbit, nElectron)
LET occ = 1.0*nElectron/nOrbit
FOR iState=0 TO nOrbit
LET occupation(iState) = occ
NEXT iState
END SUB
! ---------- iterate LDA
EXTERNAL SUB iterateLDA(stateMax, iterMax) !public
DECLARE EXTERNAL FUNCTION steepestDescent
DECLARE EXTERNAL SUB setElectronDensity,setEffectivePotential,solveKohnSham,sortState,setOccupation
LET errorDecisionOrbit = (numberOfElectron-1)/2
CALL setElectronDensity
CALL setEffectivePotential
CALL solveKohnSham(numberOfOrbit,iterMax)
CALL sortState(numberOfOrbit)
CALL setOccupation(numberOfOrbit,numberOfElectron)
LET iterationError = sdEnergy(errorDecisionOrbit) - energyMem
LET energyMem = sdEnergy(errorDecisionOrbit)
END SUB
!--- (2) set electron density rho <-- sdState(), occupation()
EXTERNAL SUB setElectronDensity
FOR i=0 TO NNx-1
LET rho(i) = rho(i)*(1.0-mixing)
FOR ie=0 TO numberOfOrbit-1
IF occupation(ie)>0.0 THEN
LET rho(i) = rho(i) + mixing*occupation(ie)*(sdState(ie,i)*sdState(ie,i))/lylz
END IF
NEXT ie
NEXT i
END SUB
!--- (3) set effective potential <-- electron density
EXTERNAL SUB setEffectivePotential
DECLARE EXTERNAL SUB poisson,setVxc
CALL poisson(20) !setVh
CALL setVxc
FOR i=0 TO NNx-1
LET vv(i) = vvext(i)+vvh(i)+vvx(i)+vvc(i)
NEXT i
END SUB
EXTERNAL SUB poisson(iterMax)
LET h2 = 4.0*PI*dx*dx
LET omegav2 = 0.5*1.8
FOR iter=0 TO iterMax-1
FOR i=1 TO NNx-2
LET vvh(i) = vvh(i)+omegav2*(vvh(i+1)+vvh(i-1)-2.0*vvh(i) +h2*rho(i))
NEXT i
NEXT iter
END SUB
EXTERNAL SUB setVxc !set exchage and correlation potential (Perdew and Zunger)
LET c1 = -0.984745022
FOR i=0 TO NNx-1
LET rh = rho(i)
LET rh3 = rh^0.33333333
LET vvx(i) = c1*rh3
LET rs = 0.6204/(rh3+1.0e-20)
IF rs>=1.0 THEN
LET sqrtrs = SQR(rs)
LET ec = -0.1423/(1.0+1.0529*sqrtrs+0.3334*rs)
LET vvc(i) = ec*(1.0+1.22838*sqrtrs+0.4445*rs)/(1.0+1.0529*sqrtrs+0.3334*rs)
ELSE
LET vvc(i) = -0.05837-0.0084*rs +(0.0311+0.00133*rs)*LOG(rs)
END IF
NEXT i
END SUB
EXTERNAL FUNCTION eeCorrelation(rh)
LET r = 0.6204/(rh^0.33333333+1.0e-20)
IF r>=1.0 THEN
LET ec = -0.1423/(1.0+1.0529*SQR(r)+0.3334*r)
ELSE
LET ec = -0.0480-0.0116*r+(0.0311+0.0020*r)*LOG(r)
END IF
LET eeCorrelation = ec
END FUNCTION
!--- (4) solve Kohn-Sham equation
EXTERNAL SUB solveKohnSham(stateMax, iterMax)
DECLARE EXTERNAL FUNCTION steepestDescent
DECLARE EXTERNAL SUB GramSchmidt,sortState
FOR i=0 TO iterMax-1
FOR ist=0 TO stateMax-1
LET sdEnergy(ist) = steepestDescent(ist,dampingFactor)
NEXT ist
CALL GramSchmidt(stateMax)
LET iterCount = iterCount + 1
NEXT i
END SUB
EXTERNAL FUNCTION steepestDescent(ist,damp) !--- steepest descent method
DECLARE EXTERNAL FUNCTION energyOfState
DECLARE EXTERNAL SUB normalizeState
LET h2 = 2*dx*dx
LET ei = energyOfState(ist) !--- E_ist = <ist|H|ist>
FOR i=1 TO NNx-2 !--- |wrk> = (H-E_ist)|ist>
LET wrk(i) = (2*sdState(ist,i)-sdState(ist,i+1)-sdState(ist,i-1))/h2+(vv(i)-ei)*sdState(ist,i)
NEXT i
FOR i=1 TO NNx-2 !--- |ist(next)> = |ist> - damp*|wrk> ( norm(|ist(next)>) <>1 )
LET sdState(ist,i) = sdState(ist,i)-damp*wrk(i)
NEXT i
CALL normalizeState(ist)
LET steepestDescent = ei
END FUNCTION
EXTERNAL FUNCTION energyOfState(ist) !--- E_ist = <ist|H|ist>/<ist|ist>
LET h2 = 2*dx*dx
LET s = 0
LET sn=0
FOR i=1 TO NNx-2
LET s = s+sdState(ist,i)*((2*sdState(ist,i)-sdState(ist,i+1)-sdState(ist,i-1))/h2+vv(i)*sdState(ist,i))
LET sn = sn + sdState(ist,i)*sdState(ist,i)
next i
LET energyOfState = s/sn
END FUNCTION
EXTERNAL SUB GramSchmidt(stateMax) !--- Gram-Schmidt orthonormalization
DECLARE EXTERNAL FUNCTION innerProduct
DECLARE EXTERNAL SUB normalizeState
CALL normalizeState(0)
FOR istate=1 TO stateMax-1
FOR ist=0 TO istate-1
LET s = innerProduct(ist,istate)
FOR i=1 TO NNx-2
LET sdState(istate,i) = sdState(istate,i) - s*sdState(ist,i)
NEXT i
NEXT ist
CALL normalizeState(istate)
NEXT iState
END SUB
!--- (5) sort state
EXTERNAL SUB sortState(stateMax)
FOR ist=stateMax-2 TO 0 STEP -1
IF sdEnergy(ist)>sdEnergy(ist+1)+0.00001 THEN
FOR i=0 TO NNx-1
LET w = sdState(ist,i)
LET sdState(ist,i) = sdState(ist+1,i)
LET sdState(ist+1,i) = w
NEXT i
LET w = sdEnergy(ist)
LET sdEnergy(ist) = sdEnergy(ist+1)
LET sdEnergy(ist+1) = w
END IF
NEXT ist
END SUB
!--- (6) set occupation
EXTERNAL SUB setOccupation(stateMax, nElectron)
DECLARE EXTERNAL FUNCTION trialOcc,FermiDirac
LET eUpper = sdEnergy(stateMax-1)+1.0
LET eLower = sdEnergy(0)-1.0
FOR i=0 TO stateMax-1
IF sdEnergy(i)>eUpper THEN LET eUpper = sdEnergy(i)
IF sdEnergy(i)<eLower THEN LET eLower = sdEnergy(i)
NEXT i
DO WHILE (eUpper-eLower>1.0e-12)
LET eFermi = (eUpper+eLower)/2.0
LET ntrial = trialOcc(stateMax, eFermi)
IF ntrial<nElectron THEN
LET eLower = eFermi
ELSE
LET eUpper = eFermi
END IF
LOOP
LET eFermi = (eUpper+eLower)/2.0
FOR i=0 TO stateMax-1
LET occupation(i) = 2.0*FermiDirac(sdEnergy(i), eFermi)
IF (occupation(i)<0.0001) THEN LET occupation(i) = 0.0
IF (2.0-occupation(i)<0.0001) THEN LET occupation(i) = 2.0
NEXT i
END SUB
EXTERNAL FUNCTION trialOcc(stateMax, eFermi)
DECLARE EXTERNAL FUNCTION FermiDirac
LET s = 0.0
FOR i=0 TO stateMax-1
LET s = s + 2.0*FermiDirac(sdEnergy(i), eFermi)
NEXT i
LET trialOcc = s
END FUNCTION
EXTERNAL FUNCTION FermiDirac(ee, ef)
LET et = broadening !level width
LET a = (ee-ef)/et
IF a>100 THEN LET ret = 0.0 ELSE LET ret = 1.0/(EXP(a)+1.0)
LET FermiDirac = ret
END FUNCTION
! ---------- utility
EXTERNAL FUNCTION innerProduct(ist,jst) !--- <ist|jst>
LET s = 0
FOR i=1 TO NNx-2
LET s = s + sdState(ist,i)*sdState(jst,i)
NEXT i
LET innerProduct = s*dx
END FUNCTION
EXTERNAL SUB normalizeState(ist)
LET s = 0
FOR i=1 TO NNx-2
LET s = s + sdState(ist,i)*sdState(ist,i)*dx
NEXT i
LET a = SQR(1/s)
FOR i=1 TO NNx-2
LET sdState(ist,i) = a*sdState(ist,i)
NEXT i
END SUB
EXTERNAL FUNCTION totalEnergy
DECLARE EXTERNAL FUNCTION eeCorrelation
LET sei = 0.0
FOR i=0 TO numberOfOrbit-1
LET sei = sei + occupation(i)*sdEnergy(i)
NEXT i
LET s = 0.0
FOR i=1 TO NNx-1
LET s = s + (-0.5*vvh(i)-0.25*vvx(i)+eeCorrelation(rho(i))-vvc(i))*rho(i)
NEXT i
LET s = s*dx
LET totalEnergy = sei + s
END FUNCTION
! ---------- drawState
EXTERNAL SUB drawState(dispMode) !public
DECLARE EXTERNAL SUB dispInnerProduct,plotfn
DECLARE EXTERNAL FUNCTION totalEnergy
LET sc = 20
LET xp = 50
LET yp = 180
LET vMag = 10
LET stMag = 100
SET DRAW MODE HIDDEN
CLEAR
SET LINE COLOR 1 ! black : PLOT x-axis
PLOT LINES: xp,yp;dx*NNx*sc+xp,yp
!---plot rho
SET AREA COLOR 8 ! gray : PLOT rho;
FOR i=0 TO NNx-2
PLOT AREA: dx*i*sc+xp,yp;dx*i*sc+xp,rho(i)*20000+yp;dx*(i+1)*sc+xp,rho(i+1)*20000+yp;dx*(i+1)*sc+xp,yp
NEXT i
CALL plotFN(vvext,sc,vMag,xp,yp,0,1) !black, plot external potential vvext(x)
!
IF dispmode=2 THEN !---plot Vext,Veff(),vvh(),vvxc()x10
SET TEXT HEIGHT 6
CALL plotFN(vv,sc,vMag,xp,yp,0,10) !dark green, plot effective potential vv(x)
CALL plotFN(vvh,sc,vMag,xp,yp,0,2) !blue, plot Hartree potential vvh(x)
CALL plotFN(vvx,sc,vMag*10,xp,yp,0,4) !red, plot exchange potential vvx(x)
CALL plotFN(vvc,sc,vMag*10,xp,yp,0,7) !magenta, plot correlation potential vvc(x)
SET TEXT COLOR 1
PLOT TEXT, AT 50, yp+65 :"Vext()"
SET TEXT COLOR 10
PLOT TEXT, AT 50, yp+50 :"Veff()"
SET TEXT COLOR 2
PLOT TEXT, AT 50, yp+35 :"Vh()"
SET TEXT COLOR 4
PLOT TEXT, AT 50, yp+20 :"Vx() x 10"
SET TEXT COLOR 7
PLOT TEXT, AT 50, yp+5 :"Vc() x 10"
END IF
IF dispMode=1 THEN !--- plot Vext(),|i>
SET TEXT HEIGHT 5
FOR ist=0 TO 4
IF sdEnergy(ist)<12 THEN
SET LINE COLOR 1+ist
SET TEXT COLOR 1+ist
FOR i=0 TO NNx-1 !plot wave function |psi(x,t)>
PLOT LINES: i*dx*sc+xp, sdState(ist,i)*stMag+sdEnergy(ist)*20+yp;
NEXT i
PLOT LINES
PLOT TEXT, AT xp-20,sdEnergy(ist)*20+yp :"|"&STR$(ist)&">"
END IF
NEXT ist
END IF
CALL dispInnerProduct(0,dx*NNx*sc+xp+20,yp)
!--- caption
SET TEXT HEIGHT 10
SET TEXT COLOR 1 ! black
PLOT TEXT, AT 50,115 ,USING "iteration count =###### error =#.##########":iterCount,iterationError
PLOT TEXT, AT 50,100 ,USING "total energy =###.##########":totalEnergy
PLOT TEXT, AT 50, 85 ,USING "E0 =###.########## Occ =#.#####":sdEnergy(0),occupation(0)
PLOT TEXT, AT 50, 70 ,USING "E1 =###.########## Occ =#.#####":sdEnergy(1),occupation(1)
PLOT TEXT, AT 50, 55 ,USING "E2 =###.########## Occ =#.#####":sdEnergy(2),occupation(2)
PLOT TEXT, AT 50, 40 ,USING "E3 =###.########## Occ =#.#####":sdEnergy(3),occupation(3)
PLOT TEXT, AT 50, 25 ,USING "E4 =###.########## Occ =#.#####":sdEnergy(4),occupation(4)
PLOT TEXT, AT 50, 10 :"RS-DFT - Local Density Approximation 1D"
PLOT TEXT, AT 50,470 :"[esc] exit [D] chage dispMode"
PLOT TEXT, AT 50,455 :"[1] ... [6] number of electron"
PLOT TEXT, AT 50,440 :"[7] hermonics k*x^2 [8] quantum well"
SET DRAW MODE EXPLICIT
END SUB
EXTERNAL SUB dispInnerProduct(ist,xp,yp)
DECLARE EXTERNAL FUNCTION innerProduct
SET TEXT HEIGHT 5
SET TEXT COLOR 1 ! black
FOR jst=0 TO numberOfOrbit-1
PLOT TEXT, AT xp,yp+15*jst ,USING "("&STR$(ist)&"|"&STR$(jst)&") = -%.###^^^^":innerProduct(ist,jst)
NEXT jst
PLOT TEXT, AT xp,yp+15*10 :"(i|j) inner product"
END SUB
EXTERNAL SUB plotFN(a(),sc,mag,xp,yp,offset,col)
SET LINE COLOR col
FOR i=0 TO NNx-1
PLOT LINES: dx*i*sc+xp,a(i)*mag+offset+yp;
NEXT i
PLOT LINES
END SUB
END MODULE
|
|