|
> No.4448[元記事へ]
Bsitumonnさんへのお返事です。
> 複素数の解をもつ z^3=1,z^4=1などの解を、点で描画したいのですが。
http://edupa.info/pdf/math/hm/hmb-3-07.pdf
下記のプログラムでよろしいでしょうか?
OPTION ARITHMETIC COMPLEX
DIM Y(10)
CALL GINIT(800,800)
LET X=COMPLEX(1,0) !'←ここの数字を変えて下さい
LET Z=SQR(ABS(X))*1.1
SET WINDOW -Z,Z,-Z,Z
FOR N=2 TO 10
CLEAR
DRAW GRID(Z/11,Z/11)
LET R=ABS(X)^(1/N)
LET TH=ANGLE(RE(X),IM(X))
FOR J=1 TO N
LET Y(J)=R*EXP(SQR(-1)*((TH+2*PI*J)/N)) !'ド・モアブルの定理
PRINT J;":";Y(J),Y(J)^N
NEXT J
PRINT
FOR J=1 TO N
SET COLOR 4
DRAW DISK WITH SCALE(.02)*SHIFT(Y(J))
SET COLOR 2
PLOT LINES:Y(J);
NEXT J
PLOT LINES:Y(1)
IF N<10 THEN
INPUT PROMPT "HIT RETURN KEY":A$
!' PAUSE
END IF
NEXT N
END
EXTERNAL SUB GINIT(XSIZE,YSIZE)
OPTION ARITHMETIC COMPLEX
SET BITMAP SIZE XSIZE,YSIZE
!'SET WINDOW 0,XSIZE-1,YSIZE-1,0
SET POINT STYLE 2
SET COLOR MODE "REGULAR"
SET COLOR MIX(0) 0,0,0
SET COLOR MIX(1) 0,0,1
SET COLOR MIX(2) 1,0,0
SET COLOR MIX(3) 1,0,1
SET COLOR MIX(4) 0,1,0
SET COLOR MIX(5) 0,1,1
SET COLOR MIX(6) 1,1,0
SET COLOR MIX(7) 1,1,1
CLEAR
END SUB
|
|