ピカチュウ曲線?

 投稿者:しばっち  投稿日:2020年 2月 5日(水)22時26分26秒
  こんな関数がよく定義できたと関心するところです。
一体どうやってこの関数を定義した(求めた)のでしょう。AIでも使っているのでしょうか?
https://www.wolframalpha.com/input/?i=pikachu+curve&lang=ja

他のポケモンの「関数」もあるようです。
https://www.wolframalpha.com/input/?i=random+pokemon+curve&lang=ja

OPTION ARITHMETIC COMPLEX
SET WINDOW -600,400,-600,400
DRAW GRID(100,100)
FOR T=0 TO 52*PI STEP 1/64
   PLOT LINES:X(T),Y(T);
   IF IM(X(T))>0 OR IM(Y(T))>0 THEN
      PLOT LINES
   END IF
NEXT T
END

EXTERNAL  FUNCTION X(T)
OPTION ARITHMETIC COMPLEX
LET X = ((-1/4* SIN(10/7 - 23* T) - 3/10* SIN(4/3 - 22* T) - 2/5 *SIN(7/5 - 19* T) - 1/5* SIN(7/5 - 16* T) - 3/7* SIN(10/7 - 15* T) - 3/8* SIN(13/9 - 9* T) - 19/13* SIN(11/7 - 3* T) + 222/5* SIN(T + 11/7) + 41/2* SIN(2* T + 11/7) + 34/9* SIN(4* T + 11/7) + 1/3* SIN(5* T + 8/5) + 3/8* SIN(6* T + 8/5) + 12/7* SIN(7* T + 13/8) + 11/7* SIN(8* T + 13/8) + 1/4* SIN(10* T + 20/13) + 2/9* SIN(11* T + 16/9) + 3/8* SIN(12* T + 8/5) + 1/3* SIN(13* T + 7/4) + 1/2 *SIN(14* T + 17/10) + 5/7* SIN(17* T + 17/10) + 1/28* SIN(18* T + 9/2) + 1/2* SIN(20* T + 12/7) + 3/7* SIN(21* T + 16/9) + 6/11* SIN(24* T + 7/4) - 979/9)* TH(51*PI - T)* TH(T - 47*PI) + (-6/5* SIN(14/9 - 22* T) - 1/9* SIN(7/5 - 19* T) - 9/8* SIN(14/9 - 18* T) - 1/14* SIN(15/11 - 15* T) - 6/5* SIN(11/7 - 12* T) - 7/6* SIN(11/7 - 8* T) - 29/10* SIN(11/7 - 6* T) - 104/3* SIN(11/7 - 2* T) + 415/18* SIN(T + 11/7) + 71/18* SIN(3* T + 11/7) + 19/8* SIN(4* T + 33/7) + 22/21* SIN(5* T + 8/5) + 3/8* SIN(7* T + 61/13) + 5/9* SIN(9* T + 11/7) + &
& 1/8* SIN(10* T + 14/3) + 4/7* SIN(11* T + 11/7) + 4/11* SIN(13* T + 14/3) + 1/7* SIN(14* T + 14/3) + 2/7* SIN(16* T + 5/3) + 1/6* SIN(17* T + 5/3) + 6/7* SIN(20* T + 8/5) + 1/7* SIN(21* T + 5/3) + 1/6* SIN(23* T + 8/5) - 2765/8)* TH(47*PI - T)* TH(T - 43 *PI) + (1189/22* SIN(T + 11/7) + 3/4* SIN(2* T + 13/8) + 11/2* SIN(3* T + 8/5) + 2/7* SIN(4* T + 17/7) + 22/9* SIN(5* T + 18/11) + 1/4 *SIN(6* T + 17/7) + 16/17* SIN(7* T + 20/11) + 1/5* SIN(8* T + 29/9) - 1627/7)* TH(43*PI - T)* TH(T - 39*PI) + (-3/7* SIN(1/18 - 5* T) - 3/4* SIN(1/2 - 3* T) + 109/9* SIN(T + 13/10) + 5/8* SIN(2* T + 11/3) + 5/9* SIN(4* T + 10/3) + 3/10* SIN(6* T + 21/8) + 2/9* SIN(7* T + 2/3) + 1/4 *SIN(8* T + 23/8) - 1190/9)* TH(39*PI - T)* TH(T - 35*PI) + (188/21* SIN(T + 27/28) + 2/5* SIN(2* T + 17/6) + 2/3* SIN(3* T + 91/23) + 3/8* SIN(4* T + 53/18) + 2/11* SIN(5* T + 1/7) - 369)* TH(35*PI - T)* TH(T - 31 *PI) + (-8/9* SIN(1/10 - 12* T) - 34/9* SIN(10/9 - 6* T) - 137/10* SIN(5/7 - 2* T) + 26/5* SIN(T + 13/4) &
& + 118/5* SIN(3* T + 11/8) + 43/8* SIN(4* T + 13/7) + 49/6* SIN(5* T + 11/12) + 22/5* SIN(7* T + 13/4) + 17/16* SIN(8* T + 1/7) + 5/4* SIN(9* T + 1/4) + 5/7* SIN(10* T + 17/5) + 29/15* SIN(11* T + 5/6) - 1915/8)* TH(31*PI - T)* TH(T - 27*PI) + (-2/7 *SIN(10/7 - 7* T) - SIN(1/27 - 4* T) + 68/7* SIN(T + 44/15) + 76/9* SIN(2* T + 37/10) + 30/7* SIN(3* T + 1) + 8/9* SIN(5* T + 3/2) + 4/5* SIN(6* T + 31/8) + 3/7* SIN(8* T + 10/3) + 6/13* SIN(9* T + 8/7) + 1/3* SIN(10* T + 31/9) - 2135/9)* TH(27*PI - T)* TH(T - 23*PI) + (-3/8* SIN(1/4 - 23* T) - 3/5* SIN(1/8 - 22* T) - 13/8* SIN(5/4 - 20* T) - 9/7* SIN(3/2 - 16* T) - 41/5* SIN(4/3 - 4* T) + 768/7* SIN(T + 11/5) + 109/5* SIN(2* T + 16/7) + 150/13* SIN(3* T + 11/6) + 33/7* SIN(5* T + 97/24) + 23/4* SIN(6* T + 5/7) + 69/7* SIN(7* T + 9/8) + 32/5* SIN(8* T + 21/5) + 7/6* SIN(9* T + 22/9) + 28/5* SIN(10* T + 5/6) + 43/10* SIN(11* T + 26/7) + 14/9* SIN(12* T + 5/11) + 13/9* SIN(13* T + 40/9) + 11/6* SIN(14* T + 2/5) + 3/2* SIN(15* T + 17/10) &
& + 7/11* SIN(17* T + 4/3) + 3/8* SIN(18* T + 31/10) + 4/7* SIN(19* T + 14/9) + 6/5* SIN(21* T + 17/7) + 4/7* SIN(24* T + 27/8) + 1006/11) *TH(23*PI - T) *TH(T - 19*PI) + (-63/8* SIN(2/7 - 8* T) - 38/13* SIN(11/9 - 6* T) - 14/5* SIN(1/17 - 4* T) + 77/9* SIN(T + 1/2) + 52/7* SIN(2* T + 10/3) + 22/9* SIN(3* T + 76/17) + 21/8* SIN(5* T + 26/7) + 3* SIN(7* T + 15/8) + 64/7* SIN(9* T + 57/14) + 6* SIN(10* T + 17/6) - 544/7)* TH(19*PI - T) *TH(T - 15*PI) + (-37/10* SIN(4/7 - 5* T) - 3* SIN(3/7 - 3* T) + 24/7* SIN(T + 7/6) + 9/7* SIN(2* T + 2/5) + 31/15* SIN(4* T + 37/8) + 9/5* SIN(6* T + 12/5) + 59/12* SIN(7* T + 13/6) + 15/7* SIN(8* T + 25/8) + 134/15* SIN(9* T + 7/3) + 73/8* SIN(10* T + 1/5) - 4406/11)* TH(15* PI - T)* TH(T - 11*PI) + (236/7* SIN(T + 6/5) + 1/2* SIN(2* T + 47/12) - 627/5)*TH (11*PI - T)*TH(T - 7*PI) + (69/2* SIN(T + 5/6) - 715/2) *TH(7*PI - T) *TH(T - 3* PI) + (-19/9 *SIN(6/5 - 21* T) - 37/10* SIN(7/9 - 19* T) - 23/8* SIN(1 - 17* T) - 16/3* SIN(7/6 - 16* T) &
& - 29/5* SIN(1/5 - 9* T) - 919/11* SIN(1/7 - 3* T) + 1573/6* SIN(T + 91/45) + 214/5* SIN(2* T + 33/8) + 421/14* SIN(4* T + 13/8) + 61/6* SIN(5* T + 19/5) + 401/16* SIN(6* T + 43/14) + 511/51* SIN(7* T + 35/8) + 144/7* SIN(8* T + 5/6) + 137/10* SIN(10* T + 25/13) + 18/7* SIN(11* T + 15/7) + 17/9* SIN(12* T + 41/9) + 9/7* SIN(13* T + 13/7) + 29/10 *SIN(14* T + 22/7) + 25/8* SIN(15* T + 1/4) + 12/5 *SIN(18* T + 11/8) + 14/5* SIN(20* T + 27/7) + 13/8* SIN(22* T + 12/7) + 7/6* SIN(23* T + 7/9) + 26/11* SIN(24* T + 23/7) - 1891/8) *TH(3* PI - T)*TH(T + PI))*TH(SQR(SGN(SIN(T/2))))
END FUNCTION

EXTERNAL  FUNCTION Y(T)
OPTION ARITHMETIC COMPLEX
LET Y = ((-8/11* SIN(11/8 - 22* T) - 1/2* SIN(10/7 - 21* T) + 67/6* SIN(T + 33/7) + 1478/29* SIN(2* T + 11/7) + 3/5* SIN(3* T + 30/7) + 26/3* SIN(4* T + 11/7) + 1/6* SIN(5* T + 13/9) + 30/29* SIN(6* T + 8/5) + 2/5* SIN(7* T + 14/3) + 88/29* SIN(8* T + 8/5) + 1/4* SIN(9* T + 31/7) + 11/8* SIN(10* T + 8/5) + 1/16* SIN(11* T + 9/2) + 1/12* SIN(12* T + 5/4) + 1/10* SIN(13* T + 25/11) + 11/8* SIN(14* T + 18/11) + 2/7* SIN(15* T + 37/8) + 1/6* SIN(16* T + 11/8) + 2/9* SIN(17* T + 5/3) + 1/5* SIN(18* T + 17/10) + 1/13* SIN(19* T + 19/8) + 23/24* SIN(20* T + 12/7) + 7/11* SIN(23* T + 9/5) + 9/7* SIN(24* T + 7/4) - 1538/7)* TH(51* PI - T)* TH(T - 47* PI) + (-2/7* SIN(20/13 - 23* T) - 1/6* SIN(3/2 - 20* T) - 5/7* SIN(20/13 - 17* T) - 1/9* SIN(20/13 - 11* T) - 1/6* SIN(13/9 - 9* T) - 19/6* SIN(17/11 - 3* T) + 263/5* SIN(T + 11/7) + 614/15* SIN(2* T + 11/7) + 87/10* SIN(4* T + 11/7) + 1/7* SIN(5* T + 11/8) + 19/11* SIN(6* T + 11/7) + 7/5* SIN(7* T + 11/7) + 4/3* SIN(8* T + 8/5) &
& + 9/5* SIN(10* T + 14/9) + 4/7* SIN(12* T + 8/5) + 3/11* SIN(13* T + 3/2) + 1/8* SIN(14* T + 22/15) + 1/9* SIN(15* T + 12/7) + 6/5* SIN(16* T + 11/7) + 2/9* SIN(18* T + 11/7) + 3/5* SIN(19* T + 8/5) + 1/26* SIN(21* T + 15/11) + 6/7* SIN(22* T + 8/5) - 1867/8)* TH(47* PI - T)* TH(T - 43* PI) + (118/39* SIN(T + 11/7) + 40/7* SIN(2* T + 33/7) + 49/25* SIN(3* T + 14/3) + 12/5* SIN(4* T + 8/5) + 1/9* SIN(5* T + 32/13) + 5/2* SIN(6* T + 13/8) + 2/5* SIN(7* T + 22/5) + 3/4* SIN(8* T + 7/4) - 143/10)* TH(43* PI - T)* TH(T - 39* PI) + (-1/8* SIN(2/3 - 8* T) - 1/2* SIN(7/5 - 2* T) - 246/19* SIN(1/7 - T) + 1/4* SIN(3* T + 33/16) + 1/6* SIN(4* T + 17/6) + 1/5* SIN(5* T + 31/7) + 1/11* SIN(6* T + 50/17) + 1/8* SIN(7* T + 30/7) + 665/6)* TH(39* PI - T)* TH(T - 35* PI) + (-119/10* SIN(7/15 - T) + 2/11* SIN(2* T + 25/7) + 2/9* SIN(3* T + 5/8) + 1/5* SIN(4* T + 33/7) + 1/4* SIN(5* T + 19/10) + 1023/10)* TH(35* PI - T)* TH(T - 31* PI) + (-1/7 *SIN(2/7 - 12* T) - 1/8* SIN(3/10 - 5* T) &
& + 25/7* SIN(T + 77/17) + 355/59* SIN(2* T + 41/40) + 27/5* SIN(3* T + 46/15) + 33/7* SIN(4* T + 11/3) + 27/10* SIN(6* T + 13/9) + 5/11* SIN(7* T + 11/5) + 5/8* SIN(8* T + 3) + 8/5* SIN(9* T + 16/15) + 16/15* SIN(10* T + 1/7) + 7/9* SIN(11* T + 12/5) - 862/7)* TH(31* PI - T)* TH(T - 27* PI) + (-1/3* SIN(5/4 - 8* T) - 2/5* SIN(5/9 - 7* T) - 5/7* SIN(11/8 - 5* T) - 7/2* SIN(15/14 - 2* T) + 29/8* SIN(T + 41/10) + 11/6* SIN(3* T + 13/3) + 7/6* SIN(4* T + 1/27) + 2/7* SIN(6* T + 8/7) + 1/9* SIN(9* T + 9/5) + 2/7* SIN(10* T + 1/10) + 201/5)* TH(27* PI - T)* TH(T - 23* PI) + (-4/11* SIN(8/9 - 12* T) - 10/7* SIN(19/13 - 10* T) + 623/3* SIN(T + 10/7) + 39/5* SIN(2* T + 10/11) + 251/9* SIN(3* T + 4/3) + 5/7* SIN(4* T + 4/3) + 61/6* SIN(5* T + 4/3) + 14/9* SIN(6* T + 23/7) + 76/25* SIN(7* T + 9/7) + 3/4* SIN(8* T + 1/4) + 19/5* SIN(9* T + 3/2) + 17/6* SIN(11* T + 6/5) + 13/8* SIN(13* T + 14/13) + 8/9* SIN(14* T + 17/6) + 24/25* SIN(15* T + 1/2) + 1/6* SIN(16* T + 13/8) &
& + 5/8* SIN(17* T + 1) + 1/7* SIN(18* T + 18/17) + 6/7* SIN(19* T + 1) + 1/4* SIN(20* T + 4/9) + 2/7* SIN(21* T + 7/5) + 1/3* SIN(22* T + 8/7) + 2/5* SIN(23* T + 1/26) + 2/11* SIN(24* T + 8/7) - 243/8) *TH(23* PI - T) *TH(T - 19* PI) + (-111/10* SIN(4/5 - 9* T) - 12/5* SIN(7/13 - 2* T) + 1/6* SIN(T + 48/11) + 13/8* SIN(3* T + 27/7) + 71/24* SIN(4* T + 6/11) + 22/9* SIN(5* T + 7/2) + 19/7* SIN(6* T + 8/17) + 20/7* SIN(7* T + 34/9) + 55/7* SIN(8* T + 6/5) + 64/9* SIN(10* T + 38/9) + 27/5)* TH(19* PI - T)* TH(T - 15* PI) + (-22/7* SIN(4/3 - 8* T) - 19/7* SIN(20/13 - 6* T) + 38/13* SIN(T + 1/24) + 12/11* SIN(2* T + 5/9) + 26/7* SIN(3* T + 7/9) + 11/5* SIN(4* T + 12/11) + 37/10* SIN(5* T + 17/10) + 51/10* SIN(7* T + 10/3) + 33/4* SIN(9* T + 26/7) + 41/5* SIN(10* T + 9/5) - 27/2)* TH(15* PI - T)*TH(T - 11*PI) + (-172/5* SIN(3/8 - T) + 5/4* SIN(2* T + 7/2) + 2303/24)*TH(11*PI - T)*TH(T - 7*PI) + (441/5 - 455/12* SIN(7/9 - T))*TH(7*PI - T)*TH(T - 3*PI) &
& + (-1/3* SIN(1/20 - 18* T) - 7/5* SIN(7/9 - 17* T) - 18/11* SIN(2/5 - 14* T) - 24/5* SIN(1/13 - 9* T) + 2767/7* SIN(T + 11/3) + 229/5* SIN(2* T + 17/7) + 313/8* SIN(3* T + 22/5) + 32/3* SIN(4* T + 22/5) + 169/6* SIN(5* T + 21/8) + 23/7* SIN(6* T + 26/11) + 21/2* SIN(7* T + 5/6) + 55/6* SIN(8* T + 14/5) + 212/13* SIN(10* T + 24/7) + 26/9* SIN(11* T + 9/2) + 16/5* SIN(12* T + 25/6) + 35/17* SIN(13* T + 4/11) + 15/8* SIN(15* T + 7/10) + 2/3* SIN(16* T + 20/9) + 16/7* SIN(19* T + 4/5) + 13/7* SIN(20* T + 29/7) + 14/3 *SIN(21* T + 7/5) + 4/3* SIN(22* T + 7/4) + 12/7* SIN(23* T + 34/33) + 7/4* SIN(24* T + 27/7) - 211/5)*TH(3* PI - T)*TH(T + PI))*TH(SQR(SGN(SIN(T/2))))
END FUNCTION

EXTERNAL  FUNCTION TH(X)
OPTION ARITHMETIC COMPLEX
IF IM(X)>0 THEN
   PLOT LINES
ELSE
   IF RE(X)<0 THEN
      LET TH=0
   ELSE
      LET TH=1
   END IF
END IF
END FUNCTION
 

戻る