|
> No.574[元記事へ]
続き
EXTERNAL FUNCTION CASEC3(Z)
OPTION ARITHMETIC COMPLEX
LET CASEC3=CACOS(1/Z)
END FUNCTION
EXTERNAL FUNCTION CACOTAN(Z) !'arccotangent
OPTION ARITHMETIC COMPLEX
LET X=RE(Z)
LET Y=IM(Z)
LET D=X^2+Y^2
LET XR=(ATAN2(X/D,Y/D+1)+ATAN2(X/D,1-Y/D))/2
LET XI=-LOG((Y/D+1)^2+X^2/D^2)/4+LOG((1-Y/D)^2+X^2/D^2)/4
LET CACOTAN=COMPLEX(XR,XI)
END FUNCTION
EXTERNAL FUNCTION CACOTAN2(Z)
OPTION ARITHMETIC COMPLEX
LET CACOTAN2=CATAN(1/Z)
END FUNCTION
! 双曲線関数
EXTERNAL FUNCTION CSINH(Z) !'hyperbolic sine
OPTION ARITHMETIC COMPLEX
LET X=RE(Z)
LET Y=IM(Z)
LET XR = SINH(X) * COS(Y)
LET XI = COSH(X) * SIN(Y)
LET CSINH=COMPLEX(XR,XI)
END FUNCTION
EXTERNAL FUNCTION CSINH2(Z)
OPTION ARITHMETIC COMPLEX
LET CSINH2=(CEXP(Z)-CEXP(-Z))/2
END FUNCTION
EXTERNAL FUNCTION CCOSH(Z) !'hyperbolic cosine
OPTION ARITHMETIC COMPLEX
LET X=RE(Z)
LET Y=IM(Z)
LET XR = COSH(X) * COS(Y)
LET XI = SINH(X) * SIN(Y)
LET CCOSH=COMPLEX(XR,XI)
END FUNCTION
EXTERNAL FUNCTION CCOSH2(Z)
OPTION ARITHMETIC COMPLEX
LET CCOSH2=(CEXP(Z)+CEXP(-Z))/2
END FUNCTION
EXTERNAL FUNCTION CTANH(Z) !'hyperbolic tangent
OPTION ARITHMETIC COMPLEX
LET X=RE(Z)
LET Y=IM(Z)
LET D = COS(2 * Y) + COSH(2 * X)
LET XR = SINH(2 * X) / D
LET XI = SIN(2 * Y) / D
LET CTANH=COMPLEX(XR,XI)
END FUNCTION
EXTERNAL FUNCTION CTANH2(Z)
OPTION ARITHMETIC COMPLEX
LET CTANH2=CSINH(Z)/CCOSH(Z)
END FUNCTION
EXTERNAL FUNCTION CTANH3(Z)
OPTION ARITHMETIC COMPLEX
LET CTANH3=-CEXP(-Z)/(CEXP(Z)+CEXP(-Z))*2+1
END FUNCTION
EXTERNAL FUNCTION CCOSECH(Z) !'hyperbolic cosecant
OPTION ARITHMETIC COMPLEX
LET X=RE(Z)
LET Y=IM(Z)
LET D=COSH(X)^2*SIN(Y)^2+SINH(X)^2*COS(Y)^2
LET XR=SINH(X)*COS(Y)/D
LET XI=-COSH(X)*SIN(Y)/D
LET CCOSECH=COMPLEX(XR,XI)
END FUNCTION
EXTERNAL FUNCTION CCOSECH2(Z)
OPTION ARITHMETIC COMPLEX
LET CCOSECH2=1/CSINH(Z)
END FUNCTION
EXTERNAL FUNCTION CSECH(Z) !'hyperbolic secant
OPTION ARITHMETIC COMPLEX
LET X=RE(Z)
LET Y=IM(Z)
LET D=SINH(X)^2*SIN(Y)^2+COSH(X)^2*COS(Y)^2
LET XR=COSH(X)*COS(Y)/D
LET XI=-SINH(X)*SIN(Y)/D
LET CSECH=COMPLEX(XR,XI)
END FUNCTION
EXTERNAL FUNCTION CSECH2(Z)
OPTION ARITHMETIC COMPLEX
LET CSECH2=1/CCOSH(Z)
END FUNCTION
EXTERNAL FUNCTION CCOTANH(Z) !'hyperbolic cotangent
OPTION ARITHMETIC COMPLEX
LET X=RE(Z)
LET Y=IM(Z)
LET D=COS(2*Y)+COSH(2*X)
LET DD=SIN(2*Y)^2+SINH(2*X)^2
LET XR=SINH(2*X)*D/DD
LET XI=-SIN(2*Y)*D/DD
LET CCOTANH=COMPLEX(XR,XI)
END FUNCTION
EXTERNAL FUNCTION CCOTANH2(Z)
OPTION ARITHMETIC COMPLEX
LET CCOTANH2=1/CTANH(Z)
END FUNCTION
EXTERNAL FUNCTION CCOTANH3(Z)
OPTION ARITHMETIC COMPLEX
LET CCOTANH3=CEXP(-Z)/(CEXP(Z)-CEXP(-Z))*2+1
END FUNCTION
! 逆双曲線関数
EXTERNAL FUNCTION CASINH(Z) !'arc-hyperbolic sine
OPTION ARITHMETIC COMPLEX
LET X=RE(Z)
LET Y=IM(Z)
LET D=SQR((-Y^2+X^2+1)^2+4*X^2*Y^2)
IF X*Y>=0 THEN
LET XR=LOG((SQR(D+Y^2-X^2-1)/SQR(2)+Y)^2+(SQR(D-Y^2+X^2+1)/SQR(2)+X)^2)/2
LET XI=ATAN2(SQR(D+Y^2-X^2-1)/SQR(2)+Y,SQR(D-Y^2+X^2+1)/SQR(2)+X)
ELSE
LET XR=LOG((Y-SQR(D+Y^2-X^2-1)/SQR(2))^2+(SQR(D-Y^2+X^2+1)/SQR(2)+X)^2)/2
LET XI=-ATAN2(SQR(D+Y^2-X^2-1)/SQR(2)-Y,SQR(D-Y^2+X^2+1)/SQR(2)+X)
END IF
LET CASINH=COMPLEX(XR,XI)
END FUNCTION
EXTERNAL FUNCTION CASINH2(Z)
OPTION ARITHMETIC COMPLEX
LET CASINH2=CLOG(Z+CSQR(Z*Z+1))
END FUNCTION
EXTERNAL FUNCTION CACOSH(Z) !'arc-hyperbolic cosine
OPTION ARITHMETIC COMPLEX
LET X=RE(Z)
LET Y=IM(Z)
LET D=SQR(Y^2+(X+1)^2)
LET DD=SQR(Y^2+(X-1)^2)
IF Y>=0 THEN
LET XR=LOG((SQR(D+X+1)/2+SQR(DD+X-1)/2)^2+(SQR(D-X-1)/2+SQR(DD-X+1)/2)^2)
LET XI=2*ATAN2(SQR(D-X-1)/2+SQR(DD-X+1)/2,SQR(D+X+1)/2+SQR(DD+X-1)/2)
ELSE
LET XR=LOG((SQR(D+X+1)/2+SQR(DD+X-1)/2)^2+(-SQR(D-X-1)/2-SQR(DD-X+1)/2)^2)
LET XI=-2*ATAN2(SQR(D-X-1)/2+SQR(DD-X+1)/2,SQR(D+X+1)/2+SQR(DD+X-1)/2)
END IF
LET CACOSH=COMPLEX(XR,XI)
END FUNCTION
EXTERNAL FUNCTION CACOSH2(Z)
OPTION ARITHMETIC COMPLEX
LET CACOSH2=CLOG(Z+CSQR(Z*Z-1))
END FUNCTION
EXTERNAL FUNCTION CATANH(Z) !'arc-hyperbolic tangent
OPTION ARITHMETIC COMPLEX
LET X=RE(Z)
LET Y=IM(Z)
LET XR=LOG(Y^2+(X+1)^2)/4-LOG(Y^2+(1-X)^2)/4
LET XI=(ATAN2(Y,X+1)+ATAN2(Y,1-X))/2
LET CATANH=COMPLEX(XR,XI)
END FUNCTION
EXTERNAL FUNCTION CATANH2(Z)
OPTION ARITHMETIC COMPLEX
LET CATANH2=CLOG((1+Z)/(1-Z))/2
END FUNCTION
EXTERNAL FUNCTION CACOSECH(Z) !'arc-hyperbolic cosecant
OPTION ARITHMETIC COMPLEX
LET X=RE(Z)
LET Y=IM(Z)
LET S=(X^2-Y^2)^2+4*X^2*Y^2
LET D=Y^2/S
LET DD=X^2/S
LET SS=4*X^2*Y^2/S^2
LET E=(X^2-Y^2)/S
IF X*Y>0 THEN
LET XR=LOG((-SQR(SQR((-D+DD+1)^2+SS)+D-DD-1)/SQR(2)-Y/(X^2+Y^2))^2+(SQR(SQR((-D+DD+1)^2+SS)-D+DD+1)/SQR(2)+X/(X^2+Y^2))^2)/2
LET XI=-ATAN2(SQR(SQR((E+1)^2+SS)-E-1)/SQR(2)+Y/(X^2+Y^2),SQR(SQR((E+1)^2+SS)+E+1)/SQR(2)+X/(X^2+Y^2))
ELSE
LET XR=LOG((SQR(SQR((-D+DD+1)^2+SS)+D-DD-1)/SQR(2)-Y/(X^2+Y^2))^2+(SQR(SQR((-D+DD+1)^2+SS)-D+DD+1)/SQR(2)+X/(X^2+Y^2))^2)/2
LET XI=ATAN2(SQR(SQR((E+1)^2+SS)-E-1)/SQR(2)-Y/(X^2+Y^2),SQR(SQR((E+1)^2+SS)+E+1)/SQR(2)+X/(X^2+Y^2))
END IF
LET CACOSECH=COMPLEX(XR,XI)
END FUNCTION
EXTERNAL FUNCTION CACOSECH2(Z)
OPTION ARITHMETIC COMPLEX
LET CACOSECH2=CASINH(1/Z)
END FUNCTION
EXTERNAL FUNCTION CACOSECH3(Z)
OPTION ARITHMETIC COMPLEX
LET CACOSECH3=CLOG((CSQR(Z*Z+1)+1)/Z)
END FUNCTION
EXTERNAL FUNCTION CASECH(Z) !'arc-hyperbolic secant
OPTION ARITHMETIC COMPLEX
LET X=RE(Z)
LET Y=IM(Z)
LET D=X/(X^2+Y^2)
LET DD=Y^2/(X^2+Y^2)^2
IF Y>0 THEN
LET XR=LOG((SQR(SQR((D+1)^2+DD)+D+1)/2+SQR(SQR((D-1)^2+DD)+D-1)/2)^2+(-SQR(SQR((D+1)^2+DD)-D-1)/2-SQR(SQR((D-1)^2+DD)-D+1)/2)^2)
LET XI=-2*ATAN2(SQR(SQR((D+1)^2+DD)-D-1)/2+SQR(SQR((D-1)^2+DD)-D+1)/2,SQR(SQR((D+1)^2+DD)+D+1)/2+SQR(SQR((D-1)^2+DD)+D-1)/2)
ELSE
LET XR=LOG((SQR(SQR((D+1)^2+DD)+D+1)/2+SQR(SQR((D-1)^2+DD)+D-1)/2)^2+(SQR(SQR((D+1)^2+DD)-D-1)/2+SQR(SQR((D-1)^2+DD)-D+1)/2)^2)
LET XI=2*ATAN2(SQR(SQR((D+1)^2+DD)-D-1)/2+SQR(SQR((D-1)^2+DD)-D+1)/2,SQR(SQR((D+1)^2+DD)+D+1)/2+SQR(SQR((D-1)^2+DD)+D-1)/2)
END IF
LET CASECH=COMPLEX(XR,XI)
END FUNCTION
EXTERNAL FUNCTION CASECH2(Z)
OPTION ARITHMETIC COMPLEX
LET CASECH2=CACOSH(1/Z)
END FUNCTION
EXTERNAL FUNCTION CASECH3(Z)
OPTION ARITHMETIC COMPLEX
LET CASECH3=CLOG((CSQR(1-Z*Z)+1)/Z)
END FUNCTION
EXTERNAL FUNCTION CACOTANH(Z) !'arc-hyperbolic cotangent
OPTION ARITHMETIC COMPLEX
LET X=RE(Z)
LET Y=IM(Z)
LET D=X/(X^2+Y^2)
LET S=Y/(X^2+Y^2)
LET DD=S^2
LET XR=LOG((D+1)^2+DD)/4-LOG((1-D)^2+DD)/4
LET XI=(-ATAN2(S,D+1)-ATAN2(S,1-D))/2
LET CACOTANH=COMPLEX(XR,XI)
END FUNCTION
|
|