続き
FOR I=N*(N-2)+1 TO N*(N-1) IF I=N*(N-1) THEN PRINT #1:CHR$(9);CHR$(9);"3 V(";STR$(N*(N-1));" ";STR$(N*(N-2)+1);" ";STR$(N*(N-1)+1);")" ELSE PRINT #1:CHR$(9);CHR$(9);"3 V(";STR$(I);" ";STR$(I+1);" ";STR$(N*(N-1)+1);")" END IF NEXT I PRINT #1:CHR$(9);"}" PRINT #1:"}" PRINT #1:"Eof" CLOSE #1 !'NEXT M !'NEXT L END
EXTERNAL FUNCTION FORM$(X) OPTION ARITHMETIC COMPLEX LET FORM$=LTRIM$(USING$("---%.####",X)) END FUNCTION
EXTERNAL FUNCTION Y2(MODE,L,M,ALPHA,BETA) OPTION ARITHMETIC COMPLEX LET Y0=Y(L,M,ALPHA,BETA) SELECT CASE MODE CASE 0 LET YY=Y0*CONJ(Y0) !'2乗(共役複素数を掛ける) CASE 1 LET YY=RE(Y0) !'実部 CASE 2 !'IF M=0 THEN STOP !' M=0の時は実数(虚部は0) LET YY=IM(Y0) !'虚部 END SELECT LET Y2=ABS(YY) END FUNCTION
EXTERNAL FUNCTION Y(L,M,ALPHA,BETA) !'球面調和関数 OPTION ARITHMETIC COMPLEX LET Y=(-1)^((M+ABS(M))/2)/SQR(2*PI)*SQR((2*L+1)/2)*SQR(FAC(L-M)/FAC(L+M))*P(L,M,COS(ALPHA*PI/180))*EXP(SQR(-1)*M*BETA*PI/180) END FUNCTION
EXTERNAL FUNCTION P(L,M,X) !'ルジャンドル陪関数 OPTION ARITHMETIC COMPLEX LET T=((1-X^2)^(M/2))/(2^L) FOR K=0 TO (L-M)/2 LET S=S+(-1)^K*FAC(2*L-2*K)*X^(L-2*K-M)/FAC(K)/FAC(L-K)/FAC(L-2*K-M) NEXT K LET P=S*T END FUNCTION
EXTERNAL FUNCTION FAC(X) OPTION ARITHMETIC COMPLEX LET S=1 FOR I=2 TO X LET S=S*I NEXT I LET FAC=S END FUNCTION
|